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An Adjoint Variable Method for Frequency Domain
TLM Problems With Conducting Boundaries

M. H. Bakr, Member, IEEE, and N. K. Nikolova, Member, IEEE

Abstract—We propose a novel adjoint variable approach to
design sensitivity analysis with the frequency domain transmission
line modeling (FDTLM) method. An enlarged system matrix
is constructed that includes the perturbed metal sections of
the structure. The adjoint system of equations is then formed
and solved. The derivatives of the responses with respect to all
designable parameters are estimated using two analyses of the
original and the adjoint systems. Second-order terms are included
by approximating the values of the incident voltage waveforms in
the perturbed areas. Our novel technique is illustrated through a
number of examples.

Index Terms—Design automation, design methodology, fre-
quency domain analysis, frequency domain transmission line
modeling (FDTLM), sensitivity.

I. INTRODUCTION

THE microwave structure design problem can be formu-
lated as

(1)

where is the vector of designable parameters and is the
vector of responses obtained by electromagnetic simulation.
is the objective function to be minimized, and is the vector
of optimal designable parameters.

The classical approach for solving (1) treats the electromag-
netic simulator as a black box. The derivatives of the responses
are obtained through finite differences [1]. For a vector

, one optimization iterate involves full-wave simula-
tions. This significant computational toll motivates research for
smarter optimization approaches.

The adjoint variable method (AVM) aims at efficient estima-
tion of the sensitivities of the circuit response with respect to all
designable parameters. An adjoint system of equations is con-
structed and solved. Using the analyses of both the adjoint and
original systems, the derivatives of the objective function with
respect to all parameters can be estimated [2]–[5].

We suggest a novel implementation of the AVM method in
the frequency domain transmission line modeling (FDTLM).
The nominal system of equations is first solved for the incident
voltage waves. An adjoint system of equations, which is ob-
tained from the original system, is also solved. A small on-grid
perturbation in a parameter value is then used to deduce the
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corresponding perturbation of the system matrix. Efficient esti-
mates of the response sensitivities are obtained using the AVM.
The accuracy of these estimates is improved by including an ap-
proximate second-order term in the perturbation estimates.

II. FDTLM METHOD

FDTLM is a method for modeling time-harmonic electro-
magnetic waves. The computational space is discretized into
three-dimensional (3-D) rectangular cells. The FDTLM algo-
rithm [6] utilizes a symmetric condensed cell [7]. Voltage waves
incident on each transmission line are scattered to couple to
other transmission lines (links). There are 12 incident voltage
waves that correspond to the 12 transmission lines. For the th
node, the reflected voltage waves are related to the vector
of incident voltage waves by

(2)

where is the scattering matrix.
The reflected voltage waves become incident on neighboring

cells with the proper delay and transmission factors. The inci-
dent voltage waves for all cells are thus obtained by solving the
system of linear equations

(3)

where is the system matrix,
is the vector of incident waves for

all cells and the superscript denotes transpose.
is the vector of source excitation with being the total number
of cells. The electric and magnetic field phasors are obtained
using the solution of (3).

III. AVM METHOD

The AVM method aims at obtaining response sensitivities
with respect to all designable parameters using only two sim-
ulations. For a real system of equations , the
adjoint system of equations is given by [4]

(4)

Using the solutions of the original and adjoint systems, the sen-
sitivity of the objective function with respect to the th des-
ignable parameter is given by [4]

(5)

where is the explicit dependence term. The vector
is the solution of the original system. Applying this approach to
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the equivalent real system of (3), we obtain the complex adjoint
system

(6)

where the superscript denotes the conjugate transpose, de-
notes and .

A major difficulty in applying the AVM approach to the
FDTLM is the definition of the term for the th des-
ignable parameter, . A microwave structure is
meshed using a rectangular grid of certain dimensions. A des-
ignable parameter can assume only a discrete set of values
that are multiples of the cell size in its direction. In addition,
perturbing the structure would result in a new system matrix
with different dimension and thus a meaningful definition of a
derivative is not possible. Our novel approach attempts to solve
this problem as explained in the following section.

IV. OUR APPROACH

We assume that the structure is discretized for a given set of
values. We limit the discussion to the case where perturba-

tions in parameter values involve only changes in the location
of metallic boundaries. For the parameter we assign a corre-
sponding nominal perturbation . Perturbing the th param-
eter by results in metalizing some cells and demetalizing
other cells. We denote the set of indices of metalized and demet-
alized cells by and , respectively. The system matrix
is constructed and the system of (3) is solved to obtain the vector

. For the th parameter we define the corresponding enlarged
system of equations

(7)

where

(8)

where is the identity matrix and is the
cardinality of . Here, we include the vector of incident
voltage waves related to the cells in the set . The solution to
(7) is . Metalizing the cells in the set and
demetalizing the cells in result in an overall perturbation

of the enlarged system matrix.
The perturbed system of equations is thus given by

(9)

where is the unknown change in the vector of incident
voltage waves due to the perturbation . Here, we assume that
the sources are unaffected by any perturbation . Simplifying
(9) we get

(10)

A number of important notes should be made with regard to
(10). First, the matrix contains very few nonzero compo-
nents corresponding to the links in the sets , and the
neighboring connecting links. Second, to simplify the approach,
the second-order term could be neglected. This, how-
ever, reduces the accuracy of our sensitivity estimates because
the nonzero components of are of the same order of magni-

Fig. 1. Approximation of the values of the incident voltage waves in the
neighborhood of the perturbed structure: the incident wave values in the
cells 1 , 2 , 3 and 4 of the perturbed structure are approximated by the
corresponding values in the cells 1, 2, 3, and 4 of the unperturbed structure.

tude as the corresponding components of . This prompts us to
approximate the components of the vector corresponding
to the nonzero columns of in the right hand side of (10).
Some of these components are already known. The perturba-
tions in the incident voltage waves distribution of the links in

are given by

(11)

where is the set of link indices associated with the
th cell. For all other cells, we exploit perturbation theory

and assume that the field distribution in the neighborhood of
the perturbed cells is very close to the field distribution at cor-
responding cells of the unperturbed structure. We approximate
the values of the incident voltage waves using a one-to-one
mapping between the perturbed and unperturbed structure. This
approach is illustrated in Fig. 1.

It follows that we can define

(12)

where contains the approximate values with zeros in all
other components and . Following similar
derivation for that given in [4], [5] we see that

(13)

where and is obtained by solving (6). The
first-order derivative of the objective function with respect to the
th parameter is thus approximated by

(14)

V. EXAMPLES

A. Sensitivities of a Septum

We consider estimating the sensitivity of with respect
to the septum length (see Fig. 2). This problem is solved as
a two-dimensional (2-D) problem by invoking electrical walls
at the top and bottom planes of the computational domain. A
square cell of dimension m is utilized. The wave-
guide length and width are 30 and 20 , respectively. The
length at which sensitivities are evaluated is .

We compare the sensitivities estimated using our approach
with those obtained using central differences applied directly to
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Fig. 2. Comparison between the sensitivity @jS j =@L obtained using
central differences (o) and using our discrete AVM approach (—) for the
septum example.

the response function over a range of frequencies (see
Fig. 2). A good agreement is obtained.

B. Sensitivities of an Inductive Obstacle in a Waveguide

We also consider the sensitivities of of an induc-
tive obstacle in a parallel plate waveguide shown in Fig. 3. A
square cell of dimensions m is used. We solve
this problem as a 2-D problem for the dominant mode. The
waveguide length and width are 31 and 30 , respectively.
Symmetry is exploited to simulate only half of the waveguide
volume. The vector of parameters is .

We estimate the sensitivities of the response with respect to
the parameters at a number of frequencies. These sensitivities
are estimated at . A symmetric set
is used for the parameter . Our results are compared with
those obtained using central differences. The results are shown
in Fig. 3. Very good agreement is obtained.

VI. CONCLUSIONS

We present a novel discrete adjoint variable method for sensi-
tivity analysis with the FDTLM. An enlarged system matrix en-
ables us to define a perturbation matrix for each parameter. The
accuracy of our sensitivity estimates are improved by including

Fig. 3. Comparison between the different sensitivities for the inductive
obstacle example; @jS j =@W obtained using central differences (o) and
using our discrete AVM approach (—) and @jS j =@D obtained using central
differences (�) and using our discrete AVM approach (- - -).

an approximate second-order term in the analysis. The method is
easy to implement as it requires neither changes in the meshing
procedure nor changes in the grid size. Our approach was tested
through two examples involving metallic obstacles. Very good
match is obtained between our sensitivities and those obtained
using the computationally expensive central differences.
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